
www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 56

www.aitp-edsig.org /www.isedj.org

Reflections on Teaching App Inventor for

Non-Beginner Programmers:
Issues, Challenges and Opportunities

Andrey Soares

asoares@siu.edu

Information Systems Technologies
Southern Illinois University

Carbondale, IL 62901, USA

Abstract

App Inventor has been used successfully to teach introduction to programming course for CS/IS/IT
and Non-CS majors. Now, researchers are looking on how to include the tool in the curriculum of more

advanced computing courses. This paper presents some Issues, Challenges and Opportunities
observed while teaching courses on Mobile Application Development with App Inventor. In particular,
this paper discusses the following topics that instructors should take into consideration when designing
their courses with App Inventor: Pre-Requisite for the course, Visual vs. Textual Programming,
Planning and Designing Apps, the use of Web Services, students new to Event-driven programming,

the use of database and SQL, Lists, designing User Interfaces, discussing Data communications, and
the Use versus the Creation of objects. The paper shows that App Inventor has great potential to be

used for teaching more advanced computing concepts. For some of the topics, students may be
required to have more than just basic programming skills.

Keywords: App Inventor, Mobile Applications, Non-Beginners, Programmers

1. INTRODUCTION

Since its release in 2010, App Inventor has been
used as a teaching tool in many schools and
universities. It seems that a common use of the
tool is for teaching introduction to programming
skills for (1) middle and high school students,

(2) for beginners in Computer Science,

Information Systems or Information Technology
(CS/IS/IT) or other related technical majors, and
(3) for non-CS/IS/IT students. In fact, App
Inventor has been advertised as a tool that you
can create your own Apps with no programming
experience required (Tyler, 2011; Wolber,

Abelson, Spertus, & Looney, 2011). The tool has
also been used in a variety of educational events
and formats from a few days of workshops and
summer camps to semester-long courses. We

can see an increasing number of publications

reporting the success of using the tool for
teaching as well as for recruitment and retention
efforts.

In the Fall of 2011, I was exploring some
websites in search of apps created with App

Inventor. After checking several apps, I started

wondering if students that are new to
programming are creating such interesting apps,
what could be created if they already have
programming experience. Since then, I have
created and offered face-to-face and online
courses on App Development using App Inventor

where the pre-requisite for the course is an
introduction to programming course.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 57

www.aitp-edsig.org /www.isedj.org

Many of the apps created by the students are
available online through their personal web
pages or the web pages of their course or
instructor. Recently, the MIT Center for Mobile

Learning has made available the App Inventor
Community Gallery, an open-source repository
of apps created with App Inventor
(http://gallery.appinventor.mit.edu).

In this paper, I discuss issues, challenges and
opportunities observed while teaching the course

at a Midwest University. The discussions
represent my experiences and observations of
class activities and informal conversations with
students.

2. BACKGROUND

App Inventor for Non-Beginners
App Inventor is a visual programming language
developed by Google in 2010 and currently
hosted and maintained by the MIT Center for
Mobile Learning. It has been successfully used to
teach introductory computer science concepts

(CS0) and introduction to programming (CS1)
skills for students in CS and Non-CS majors. In
fact, not only CS but also the fields of
Information Technology (IT) and Information
Systems (IS) are using similar approaches. It is
possible to see the terms CS0, IS0 and IT0 used
interchangeably (Uludag, Karakus, & Turner,

2011) as well as the terms CS1, IS1 and IT1
(Lim, Hosack, & Vogt, 2010).

Professor David Wolber, from the Computer
Science Department at the University of San
Francisco, has created a set of course materials

that can be used to teach introductory CS
concepts for Non-CS majors (CS0 course) and
can be adapted to teach CS majors (CS1
course). Dr. Wolber’s Course-in-a-Box materials
(www.appinventor.org/course-in-a-box) includes
modules on Introduction to Event-Driven Apps,
Games, Text/Location and other Mobile

Technology, Data, Shared Data, Apps that
Access Web Data, and Software Engineering and
Procedural Abstraction. Similar materials are

needed to support the teaching of more
advanced computing and programming concepts
for non-beginners.

Gestwicki & Ahmad (2011) suggest that App
Inventor and their Studio-Based Learning
approach can be used not only to “introduce
non-CS majors to concepts of Computer
Science-not just programming, but also ideas
that tend not to be covered in conventional CS1

courses such as human-computer interaction,
incremental and iterative design processes,
collaboration, evaluation, and quality assurance”
(p. 55).

Karakus, Uludag, Guler, Turner, & Ugur (2012)
also argue that App Inventor can be used in CS2
courses for computing majors. In particular,
they contend that in a CS2 course “the emphasis
is shifted more to the inner details of
programming constructs, such as control

structures, iteration, functions, recursion,
algorithms, decision making, some basic data
structures, etc.” (p. 5). In addition, they
consider that Robotics, Software engineering,

Information Systems, and Networking, Database
and Web Development courses could incorporate

App Inventor into their curriculum. Arachchilage,
Love, & Scott (2012), for instance, have
demonstrated the use of App Inventor to create
a mobile game to teach users about conceptual
knowledge of avoiding phishing attacks, which is
a form of online identity theft.

The MIT Center for Mobile Learning at the MIT
Media Lab hosts the Annual App Inventor
Summit, an event designed for educators and
experienced users of App Inventor. In the 2012
App Inventor Summit, a working group
discussed the role of App Inventor in CS/IS
Education and its use in more advanced courses.

This paper is a contribution to the discussion of
using App Inventor beyond the CS1/IS1/IT1
courses where students have taken additional
programming or other related technical courses
such as object-oriented programming, web

development, database design, and software
engineering.

The Course
The course was designed to allow the students
to explore the features of Android phones by
using App Inventor components, rather than

being another elective programming course. So,
the pre-requisite for registering to the course is
to have taken some introduction to

programming course where students would have
been exposed to basic programming concepts,
including logic, conditions, loop, variables,
procedures, input and output. Nonetheless,

senior students would more likely have already
taken other upper division courses such as Web
programming, Object-Oriented Programming,
and Software Engineering. The visual approach
of App Inventor would help students not to focus
on programming and the syntax of coding.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 58

www.aitp-edsig.org /www.isedj.org

Instead, they would concentrate more on the
logic and events of the application.

The course uses the book App Inventor: Create

Your Own Android Apps (Wolber et al., 2011) as
reference. The book is available online in PDF
format at www.appinventor.org/projects. The
course starts by covering topics from the book,
and then new topics are added or removed as
needed to augment the students learning
experience. Because of the required prerequisite

for the course, the topics on fundamentals of
programming are not covered in details.
See some resources for instructors in the
Appendix.

3. ISSUES, CHALLENGES AND

OPPORTUNITIES

Teaching App Inventor for students with
previous programming experience presents
some challenges that instructors should take
into consideration when designing their courses.
Several assignments completed in class have

provided great insights on using App Inventor to
teach not only programming but also other
computing concepts. Following is a list (in no
particular order) of Issues, Challenges and
Opportunities observed while teaching App
Development with App Inventor for non-
beginner programmers.

Pre-Requisite
The pre-requisite for the course is some
Introduction to Programming course. The
rationale is that the time used for teaching logic
and the fundamentals of programming could be

used to explore more features of the phone and
the App Inventor tool. With this approach,
students would just adapt their programming
skills to the new environment; and the instructor
would just show how things are done within the
new environment.

While all the students have taken a
programming course prior to the course with
App Inventor, the level of programming skills

may vary from student to student. On one hand,
students may still be new to programming as
they have taken the introduction to
programming course in the semester prior to the

App development course. In some cases, the
last (or the only) programming course was taken
between one and two years ago. On the other
hand, students may be more experienced
programmers as they have taken more courses
in the area of application development and

programming such as Object-Oriented
programming, Client-Side and Server-Side Web
Development, and Software Engineering.

The range of programming skills (or lack
thereof) has posed as a challenge for the
instructor to design and implement course
assignments, especially in terms of difficulty
level and time for completion. For instance, an
assignment that uses lists should be fairly easy
for students that have experience working with

arrays, but it could be considered difficult for
students that are seen the concept of lists for
the first time, which would be the case when the
concept of arrays is not covered in introduction

to programming courses.

Visual vs. Textual Programming
When students are used to write textual source
code, the change to a visual programming
environment may be sometimes challenging,
especially when they cannot see the source
code. With App Inventor, a developer creates an
application by putting blocks together like a

puzzle.

Figure 1 and Figure 2 show examples of a code
that handles the event of a button being clicked
by the user on the screen. The visual code
sample (Figure 1) was created with App Inventor
and the textual code sample (Figure 2) was

created with Eclipse and Android SDK.

Figure 1: Visual Code for handling the event of a button

clicked

Figure 2: Textual Code for handling the event of a button

clicked

www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 59

www.aitp-edsig.org /www.isedj.org

In Figure 1, when the object Button1 is clicked,
the system generates an event called Click that
checks the property Visible of the object Image1
(i.e., Image.Visible). If the value is true, the

system changes the content of the property
Visible to false, which results on hiding the
image. If the value is false, the system changes
the property Visible to true, which will make the
image to show.

Students usually comment that they like the

blocks because they don’t get stuck reviewing
code for missing semi-colon, braces or for
misspelled code. In fact, the goal for bringing
App Inventor to class was to reduce some of

these distractions with coding and to allow
students to concentrate more on the

functionalities of the application and what can be
done with the phone.

Nevertheless, students with more programming
experience would state that they knew what
they want to do and they probably could write
the textual code to get it done but somehow

they struggled to put the blocks together.
Finding the appropriate blocks to use has also
been an issue for students with little
programming experience. Every time the course
is taught, maybe out of curiosity or frustration,
at least one student would demonstrate interest
in learning how to create the applications in

Java. This would be a great opportunity to
introduce the App Inventor Java Bridge, a library
that allows integrating App Inventor components
into apps created in Java and Android SDK
(https://code.google.com/p/apptomarket).

Planning and Designing Apps
Programming and application development
courses are a great opportunities to introduce
and teach software engineering principles to
students. After all, mobile apps are software.
Planning and designing are often explored in
most programming courses. The more

programming courses students take, the more
they understand the need to carefully plan and
design an application before writing any code.

New or less experienced programmers have a
tendency to skip the planning and designing
steps and they would go straight into the
implementation.

Although App Inventor has a Designer screen
that developers can use to build and view the
app screens, it still poses some challenges for
students to achieve the desired layout for their
apps. More often than not students start the

planning and designing of an app by building the
application screens directly with App Inventor.
When the application involves more elaborated
screens, it usually ends with the developer

switching to a paper and pencil design approach,
or with the developer being stuck building
complex screens and leaving the planning of the
app behind.

Visual tools such as the Balsamiq Mockups
(http://www.balsamiq.com) can help students to

quickly design mockup screens for their apps.
Designing the screens will force the students to
think not only about the components but also
about the underlying events, functions and

blocks that need to be used to achieve the
desired results. It will also help students to

decide how to use screen arrangements to
create the layouts they want. For example,
Figure 3 shows a mockup screen for adding a
new item for a Grocery List app (Figure 3, left)
and the complete screen implemented with App
Inventor (Figure 3, right).

Figure 3: Mockup screens for App design

By generating the mockup screens, students can
play with the screens before committing to the
implementation of an app. For the Grocery List

App, students should identify the need to use
buttons to start the BarcodeScanner,
SpeechRecoginzer, and ActivityStarter
components. To provide a list of existing grocery
categories, the developer will need the
component ListPicker to be populated with all
categories. The ListPicker component works like

a drop-down list where the user can select an
item from. Developers should also understand
that after the user clicks the button “Add”, the

www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 60

www.aitp-edsig.org /www.isedj.org

information about the new grocery item should
be stored into a Web database, which can be
implemented with the component TinyWebDB.
The button “Back” would require the developer

to hide the current “Add New Item” screen and
to show the “Main Menu” screen. Finally, to
obtain the layout presented in Figure 3, the
developer must understand how the components
VerticalArrangement and HorizontalArrangement
can be used to organize the buttons and
textboxes on the screen.

Web Services

While students get excited about creating
applications to run on their phones, they have

also demonstrated great interest in learning how
to create apps that can be integrated with other

phones and with data from a variety of online
sources (ex: weather, sports, maps, etc.).

For some students, working with web services
raises concerns with privacy, security, and
availability regarding the data and the service.
For instance, the component TinyWebDB let us

store data into a Web database that is accessible
through a web service. App Inventor uses
http://appinvtinywebdb.appspot.com as the
default service. As a demo service, it stores only
250 entries into the database. Any entries
beyond that will force the oldest entries to be
deleted. In addition, the tags stored are not

protected and can be easily accessed and
overwritten. However, developers can create
their own services and apply any protection they
need, or they can use alternative services.

The website www.programmableweb.com lists

thousands of Web APIs that could be
incorporated into the apps. Several APIs are free
and just require registration to obtain an API
Key to access the service. Depending on the
type of Web services, the results of the requests
may be in different formats, such as XML
(Extensible Markup Language) and JSON

(JavaScript Object Notation), which will require
the students to learn how to parse the
messages. The component Web in App Inventor

has a block called JsonTextDecode that
transforms JSON text into lists, which makes it
easier to manipulate data as App Inventor has
several blocks to handle lists. For XML, however,

developers need to create the code to parse the
XML text. Figure 4 shows a sample of the wind
information, in XML and JSON formats, from the
Yahoo! Weather Forecast.

Another valuable resource is the Yahoo! Query
Language (YQL), a SQL-like language that can
be used to query data tables from a variety of
web services (http://developer.yahoo.com/yql).

Some YQL tables are free and can be accessed
directly, while other tables require a Yahoo!
login or an API Key to access the data. For
example, the YQL statement select * from

weather.forecast where woeid = 2379574

would result in information about the weather
(ex: temperature, wind speed, etc.) for the
woeid = 2379574 (Chicago, IL). The WOEID

(Where On Earth ID) is a unique identifier
provided by Yahoo! GeoPlanet.

Figure 4: Sample XML and JSON results for wind

information

New to Event-driven programming

The events in App Inventor that can trigger
activities on the phone fall into the following
categories (Wolber et al., 2011, p. 223):

 User-initiated event (ex: User clicks a
button)

 Initialization event (ex: App starts)

 Timer event (ex: 50 milliseconds passes)
 Animation event (ex: object collide with

another object
 External Event (ex: phone receives a

phone call)

Figure 5 shows an example of a series of events

related to the process of taking a picture with
the camera from a phone and showing the

picture on the screen. When the object Button1
is clicked the system generates the event Click.
Then, the system starts the camera on the
phone by calling the procedure TakePicture.

When the camera application is open, the user
can take a picture and click a button (e.g., Ok or
Done) to confirm it. This will generate another
event called AfterPicture that will handle the
information about the picture. The procedure
AfterPicture receives an argument called image
that is the address of the picture within the

www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 61

www.aitp-edsig.org /www.isedj.org

phone (e.g., SD Card). Finally, the picture
address available through the parameter image
is used to set the property Picture of the
component Image1.

Figure 5: Taking and Showing a picture

Although events can be explored in different

programming courses, they are more noticeable
when students are learning to program Graphical
Unit Interface (GUI) and they have to deal with
a variety of graphical components and event
listeners. In Java, for example, an ActionListener
is triggered when a user performs certain

actions such as clicking on a button or choosing
a menu option. As GUI programming may not be
covered in introduction to programming courses,
students that are not familiar with these
concepts may experience some difficulty
identifying all the necessary events for their

apps. It might be possible to see students

omitting events or trying to handle an event
inside another event. For instance, some
students might try to set the property Picture of
the object Image1 within the event
Button1.Click (Figure 6), instead of using the
event AfterPicture as shown in Figure 5. To
change the object Image1 with the picture taken

from the camera, the system will need the
parameter image created by the event
AfterPicture.

Figure 6: Incorrect event handling

Database and SQL
App Inventor has two main components that can
be used to store data. The TinyDB stores data to
the device’s long-term memory, and the

TinyWebDB stores data to a Web database that
is available through a Web service provider.
Although these components are relatively easy
for students to understand and work with data

persistency, they are limited databases.
Nonetheless, TinyWebDB could be used to
access a data source API written in PHP or other
languages. More experienced programmers
could implement their own services to respond
to TinyWebDB requests.

An alternative component to be used for data
persistence is the FusiontablesControl, which is a
non-visible component that communicates with
Google Fusion Tables (experimental). The

component requires an API key to send SQL
queries to the server and to receive the query

results. The query results are in CSV or JSON
formats and can be transformed into lists with
the appropriate blocks in App Inventor.

The Fusiontables SQL queries can be used to
handle data from tables with INSERT, UPDATE,
DELETE and SELECT commands. The use of SQL

queries and rapid user interface design can
provide a great opportunity for using App
Inventor in Database courses. However,
students may be required to have prior
experience at least with fundamentals of
database design and SQL to implement
Fusiontables into their apps. In particular,

students should learn about the implicit ROWID
column, which is the identifier for the row of a
table. The ROWID is required to perform
INSERT, UPDATE and DELETE statements and
can be obtained through a SELECT statement.

Lists and List of Lists

The concepts of Lists, and Lists of Lists are
similar to what other computer languages call
arrays and multi-dimensional arrays,
respectively. These are typically not easy
concepts to grasp for a student that is seen it for
the first time. Even students that are already

familiar with the concepts of arrays may need a
period of adjustments to translate and adapt
their prior knowledge with arrays into the new

environment. The level of programming and the
experience with other languages, such as PHP,
may be a contributing factor to help with this
transition. For instance, students may be

familiar with languages that allow using different
data types within a list, creating an array
without specifying the size prior to using it, or
omitting data types for the variables created.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 62

www.aitp-edsig.org /www.isedj.org

Figure 7 shows a sample of a static List of Lists
that is created and populated by the developer.
In this example, the list called Employees has
two items. Each item is a sub-list with

information about an employee (e.g., name and
age).

Figure 7: A sample List of Lists

Figure 8 shows the blocks needed to select the
second item (35) of the second employee (Bob)
from the list of Employees.

Figure 8: Selecting Bob’s age

The visual approach of App Inventor makes it
easier for students to understand and create
static lists as they can visually see the structure

of the list. However, the use of dynamic lists is
still intimidating. As lists are used quite often in
course assignments, learning or reviewing these
concepts during the course would help students
to better implement lists to their apps.

User Interface

As applications usually involve some sort of
interaction with the user, students are forced to
think about the user’s experience with the app
being created. This is a great opportunity for
students to bring their own (good and bad)
experiences using mobile applications to design

the layout and behavior of their future apps. For
example, it is very common to see students
discussing about defining the size and color of
components to improve readability, notifying the

user about whether an operation was
successfully completed, or validating users’ input
to not allow phony data into the system. In
addition, students take into consideration

usability during the planning and designing of
their apps.

Many apps will require multiple screens to
organize the application and to help the user to
navigate through its different functionalities.
Students can create multiple screens by using

the button “Add Screen” in the App Inventor
environment or by creating screen arrangements
to act as screens. The arrangements can be
hidden or displayed to create the illusion of

working with multiple screens.

While the first option would be preferred, it still
has restrictions, regarding the definition of
variables and procedures, that seem to influence
the students’ decision to adopt it. As each screen
has its own components and blocks editor, the
components, variables and procedures created
for one screen are not available to other

screens. For example, if a procedure responsible
to perform some calculations in Screen1 is
needed inside Screen2, the developer will need
to re-create the procedure inside the Screen2 as
the first procedure cannot be accessed from
another screen. In addition, if the blocks of a
screen need to change a component in another

screen, the developer will need to pass
parameters between the screens or use TinyDB
to store the data to be used by the other
screens. Copying blocks between screens is not
yet supported by the current version of App
Inventor. On a positive note, the use of multiple

screens (not arrangements) will force the
students to carefully plan their apps and how the
screens will communicate with each other.

Data communication
A class project that used Bluetooth to create a
simple game of tic-tac-toe, helped with a

discussion on the use of special messages,
protocols to communicate with paired phones,
and the roles of client and server. The discussion

also helped students to use Bluetooth
communication with codified messages to create
other games (e.g., Checkers).

Figure 9 shows an example of exchanging
messages with the Bluetooth Chat app. These
messages can be the start point of a discussion
on the content and format of the messages as
well as how to exchange more elaborated
messages.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 63

www.aitp-edsig.org /www.isedj.org

Figure 9: Bluetooth Chat, From text to codified messages

In a Bluetooth Tic-Tac-Toe game, for example, a
message #1,O could be used to inform that a

player is inviting another player to play. The
capital O means that the user chooses to play

with the symbol O instead of X. When the

symbols representing the players are selected,
both systems set the variables Me and You with
the respective symbols. These variables can be
used to display the symbols above the game

board. The role of the Bluetooth connection (i.e.,
client or server) can be used to define the

symbols. The game has a setup screen where
the user can select his or her preferred symbol.
However, the player with the role of a Server
will have priority on the symbol selection.

A message #2,b1 could be used to inform that

the player has clicked on one of the buttons of
the game board. Other codified messages can be

added to improve the user’s experience with the
app. For example, when a match is over, the
system could ask if the player wants to play
again and send a message with the user’s
response to the other player (e.g., #3,Y). If the

user decides to disconnect, the system could
automatically send a message #4,end when the

button Disconnect is clicked, which would inform
the other player they are no longer playing the
game.

With that in mind, students can create a Tic-Tac-
Toe board by adding new components to the
existing Bluetooth Chat layout, and using the

messages received to interact with the game
and change the board accordingly (Figure 10).

Figure 10: Tic-Tac-Toe with Bluetooth

The game board is composed of 9 buttons (b1 to
b9) that are organized with a table screen

arrangement to provide the expected layout.
The first row has buttons b1 (top left corner),
followed by the button b2 (top middle) and
button b3 (top right corner). The middle row has
buttons b4, b5 and b6 (from left to right). The

bottom row has buttons b7, b8 and b9 (from left
to right). The layout also has several labels that
are used to design the vertical and horizontal
lines of the board. To get the effect of a thick
line, the student can remove the text of a label
and set the background color to black.

In this example, receiving the message #2,b1

would force the system to set the text of button
b1 (top-left button) with the letter O, which is
the symbol of the other player. Similarly, if the

player clicks the button b3, the system will set
the text of button b3 with X (i.e., the player’s

symbol), and will send a message #2,b3 to the

other player so that his or her phone can update
the screen with the new game move.

Using versus Creating objects

Students that are used to object-oriented
programming may find an issue related to using
versus creating objects. For example, it is

www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 64

www.aitp-edsig.org /www.isedj.org

possible to create a new instance of a button by
dragging it to the screen. After that, all the
properties and pre-defined procedures for a
button component are available (see Figure 11).

However, it is not yet possible for developers to
create their own classes of objects with
attributes and procedures, such as, a class of
enemies for a game.

Figure 11: Properties of a component Button

While writing code using only general procedures

doesn’t seem a concern to complete the
assignments, keeping the students’ mind from
thinking in terms of object-oriented
programming may be challenging, especially

when they want to organize, reuse and protect
their code.

4. CONCLUSION

This paper discussed issues, challenges and
opportunities that instructors should take into
consideration when designing their courses with
App Inventor:

 Pre-Requisite for the course

 Visual vs. Textual Programming
 Planning and Designing Apps
 The use of Web Services
 Event-driven programming

 The use of database and SQL
 Lists
 Designing User Interfaces
 Discussing Data communications
 Using versus Creating objects

Even though App Inventor has been used and

advertised as a tool for teaching basic
programming skills, it has great potential to be
used for teaching students that already have
programming experience. Despite programming

not being required, some App Inventor
components require a great deal of computing

skills such as SQL and database design.

App Inventor has the potential to be included in
the curriculum of other courses where students
could take a basic course on App Development
early in their curriculum and then more
advanced courses would use the tool to explore

the concepts and topics to be covered in class.
For instance, in a Software Engineering course,
students could use the tool to help with
requirements and interface design. For more
advanced programming courses, students could
use App Inventor Java Bridge to write code and
integrate it with App Inventor, which could help

to overcome the limitation of programming in an
object-oriented style and working collaboratively
to create applications.

In sum, App Inventor can be explored beyond
introductory programming courses for novices.

However, instructors should be aware of
potential issues and challenges related to the
required pre-requisite for the course and the
students’ prior experience with programming
and other computing skills. In terms of
opportunities, instructors could explore the use
of App Inventor to cover a variety of computing

concepts such as:

 Application development life cycle

 Web Services and Distributed computing
 Information Assurance and Security
 Software Engineering
 Data communication

 Database Design

5. ACKNOWLEDGMENTS

The author is grateful to State Farm® for
supporting this project through the 2011 State

www.manaraa.com

Information Systems Education Journal (ISEDJ) 12 (4)
ISSN: 1545-679X July 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 65

www.aitp-edsig.org /www.isedj.org

Farm Technology Grant, which was partially
used to acquire Android devices for class
instructions.

6. REFERENCES

Arachchilage, N. A. G., Love, S., & Scott, M.

(2012). Designing a Mobile Game to Teach
Conceptual Knowledge of Avoiding “Phishing
Attacks”. International Journal for e-
Learning Security, 2(2), 127-132.

Gestwicki, P., & Ahmad, K. (2011). App inventor
for Android with studio-based learning. J.
Comput. Sci. Coll., 27(1), 55-63.

Karakus, M., Uludag, S., Guler, E., Turner, S.
W., & Ugur, A. (2012, 21-23 June 2012).
Teaching computing and programming

fundamentals via App Inventor for Android.
Paper presented at the Information
Technology Based Higher Education and
Training (ITHET), 2012 International
Conference on.

Lim, B. L., Hosack, B., & Vogt, P. (2010). A web
service-oriented approach to teaching
CS/IS1. Paper presented at the Proceedings
of the 41st ACM technical symposium on

Computer science education, Milwaukee,
Wisconsin, USA.

Tyler, J. (2011). App Inventor for Android: Build
Your Own Apps - No Experience Required! :
Wiley Publishing.

Uludag, S., Karakus, M., & Turner, S. W. (2011).
Implementing IT0/CS0 with scratch, app

inventor forandroid, and lego mindstorms.
Paper presented at the Proceedings of the

2011 conference on Information technology
education, West Point, New York, USA.

Wolber, D., Abelson, H., Spertus, E., & Looney,
L. (2011). App Inventor: Create Your Own

Android Apps: O'Reilly Media.

Appendix: Resources for Instructors

1. App Inventor: http://appinventor.mit.edu

2. App Inventor 2 (Alpha): http://ai2.appinventor.mit.edu

3. App Inventor Community Gallery: http://gallery.appinventor.mit.edu

4. App Inventor: Create Your Own Android Apps (book): http://www.appinventor.org/projects

5. App Inventor Java Bridge: https://code.google.com/p/apptomarket

6. App Inventor TinyWebDB (default service): http://appinvtinywebdb.appspot.com

7. Balsamiq Mockups: http://balsamiq.com/products/mockups

8. Google App Engine: https://developers.google.com/appengine

9. Google Fusion Tables API: https://developers.google.com/fusiontables

10. Professor David Wolber’s Course-in-a-Box: http://www.appinventor.org/course-in-a-box

11. ProgrammableWeb APIs: http://www.programmableweb.com

12. Yahoo! Query Language (YQL): http://developer.yahoo.com/yql

http://appinventor.mit.edu/
http://ai2.appinventor.mit.edu/
http://gallery.appinventor.mit.edu/
http://www.appinventor.org/projects
https://code.google.com/p/apptomarket
http://appinvtinywebdb.appspot.com/
http://balsamiq.com/products/mockups
https://developers.google.com/appengine
https://developers.google.com/fusiontables
http://www.appinventor.org/course-in-a-box
http://www.programmableweb.com/
http://developer.yahoo.com/yql

